Part Number Hot Search : 
1002C M64285K A2GPXX SSG4424 NTE14 W541C261 N25F80 A2F1CCQ
Product Description
Full Text Search
 

To Download IRLR3110Z Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  auIRLR3110Z auirlu3110z s d g d-pak auIRLR3110Z specifically designed for automotive applications, thi power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. description features  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free, rohs compliant  automotive qualified * absolute maximum ratings 

  
     
     
   functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. 


!! 

"
  
 ""      
# 
   
 
    

 $  %&'()* 
 #"  i-pak auirlu3110z v dss 100v r ds(on) typ. 11m max. 14m i d (silicon limited) 63a i d (package limited) 42a parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) single pulse avalanche energy  e as (tested ) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj t j operating junction and t stg storage temperature range c reflow soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case  ??? 1.05 r ja junction-to-ambient (pcb mount)  ??? 40 c/w r ja junction-to-ambient ??? 110 a mj -55 to + 175 300 10 lbf  in (1.1n  m) 140 0.95 16 140 110 see fig.12a, 12b, 15, 16 max. 63 45 250 42 www.kersemi.com 1 2014-8-24

s d g s d g  repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).  limited by t jmax , starting t j = 25c, l = 0.16mh,r g = 25 , i as = 38a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.   this value determined from sample failure population. 100% tested to this value in production.  when mounted on 1" square pcb (fr-4 or g-10 material).
        
calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 42a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. static electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 ??? ??? v v (br)dss / t j breakdown voltage temp. coefficient ??? 0.077 ??? v/c r ds(on) static drain-to-source on-resistance ??? 11 14 m ??? 12 16 v gs(th) gate threshold voltage 1.0 ??? 2.5 v gfs forward transconductance 52 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 dynamic electrical characteristics @ t j = 25c (unless otherwise specified) q g total gate charge ??? 34 48 q gs gate-to-source charge ??? 10 ??? nc q gd gate-to-drain ("miller") charge ??? 15 ??? t d(on) turn-on delay time ??? 24 ??? t r rise time ??? 110 ??? t d(off) turn-off delay time ??? 33 ??? ns t f fall time ??? 48 ??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 3980 ??? c oss output capacitance ??? 310 ??? c rss reverse transfer capacitance ??? 130 ??? pf c oss output capacitance ??? 1820 ??? c oss output capacitance ??? 170 ??? c oss eff. effective output capacitance ??? 320 ??? source-drain ratings and characteristics parameter min. typ. max. units i s continuous source current ??? ??? 63 (body diode) a i sm pulsed source current ??? ??? 250 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 34 51 ns q rr reverse recovery charge ??? 42 63 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 4.5v  v dd = 50v i d = 38a r g = 3.7 t j = 25c, i s = 38a, v gs = 0v  t j = 25c, i f = 38a, v dd = 50v di/dt = 100a/ s  conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma v gs = 10v, i d = 38a  v ds = v gs , i d = 100 a v ds = 100v, v gs = 0v v ds = 100v, v gs = 0v, t j = 125c mosfet symbol showing the integral reverse p-n junction diode. conditions v gs = 4.5v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 80v, ? = 1.0mhz v gs = 0v, v ds = 0v to 80v  v gs = 4.5v, i d = 32a  v gs = 16v v gs = -16v v ds = 50v v ds = 25v, i d = 38a i d = 38a www.kersemi.com 2 2014-8-24
? qualification standards can be found at international rectifier?s web site: http//www.irf.com/ ?? exceptions to aec-q101 requirements are noted in the qualification report. ??? highest passing voltage qualification information ? moisture sensitivity level 3l-d pak msl1 3l-i pak n/a charged device model class c5(+/- 2000v ) ??? (per aec-q101-005) qualification level automotive (per aec-q101) ?? comments: this part number(s) passed automotive qualification. ir?s industrial and consumer qualification level is granted by extension of the higher automotive level. rohs compliant yes esd machine model class m4(+/- 700v ) ??? (per aec-q101-002) human body model class h1c(+/- 2000v ) ??? (per aec-q101-001) 
www.kersemi.com 3 2014-8-24
fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 60 s pulse width tj = 175c vgs top 15v 10v 8.0v 4.5v 3.5v 3.0v 2.7v bottom 2.5v 0 2 4 6 8 10 12 14 16 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 60 s pulse width 0 255075 i d ,drain-to-source current (a) 0 25 50 75 100 125 150 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 300 s pulse width 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 4.5v 3.5v 3.0v 2.7v bottom 2.5v 60 s pulse width tj = 25c 2.5v 
www.kersemi.com 4 2014-8-24
fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100 sec 1msec 10msec dc 0 10203040 q g total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v i d = 38a 
www.kersemi.com 5 2014-8-24
fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 63a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.383 0.000267 0.667 0.003916 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 i d , d r a i n c u r r e n t ( a ) limited by package 
www.kersemi.com 6 2014-8-24
fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs 1k vcc dut 0 l 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 4.4a 6.5a bottom 38a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 100 a i d = 250 a i d = 1.0ma i d = 1.0a q g q gs q gd v g charge +,- 
www.kersemi.com 7 2014-8-24
fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long as neither tjmax nor iav (max) is exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 25 50 75 100 125 150 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 38a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 
www.kersemi.com 8 2014-8-24
fig 17. ./0

  1 ) for n-channel hexfet   power mosfets v ds 90% 10% v gs t d(on) t r t d(off) t f fig 18a. switching time test circuit fig 18b. switching time waveforms   
  1   0.1 %
  
    + -     
  ?  
 ?  
 ? 

 
 
 !
 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period 2   !  " #$ % #& & % 2 + - + + + - - -   
   ? "# 
$%  ?  "
 !
&
 '('' ?   
$)) ? '(''*
" 
(



 
www.kersemi.com 9 2014-8-24

 
 
         
    .3 5

5
)
  !""#$ 0)
 676 8878
/8/ 7

*5 9 
www.kersemi.com 10 2014-8-24

 "   
 "  
  
           .3 5

5
)
 !""#$ 0)
 676 8878
/8/ 7

*5 9 
www.kersemi.com 11 2014-8-24
 
  % &   
         tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch 
www.kersemi.com 12 2014-8-24
ordering information base part package type complete part number form quantity auIRLR3110Z dpak tube 75 auIRLR3110Z tape and reel 2000 auIRLR3110Ztr tape and reel left 3000 auIRLR3110Ztrl tape and reel right 3000 auIRLR3110Ztrr auirlu3110z ipak tube 75 auirlu3110z standard pack 
www.kersemi.com 13 2014-8-24


▲Up To Search▲   

 
Price & Availability of IRLR3110Z

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X